Carbonaro D, Putame G, Castaldo C, Meglio FD, Siciliano K, Belviso I, Romano V, Sacco AM, Schonauer F, Montagnani S, Audenino AL, Morbiducci U, Gallo D, Massai D.
A low-cost scalable 3D-printed sample-holder for agitation-based decellularization of biological tissues. Med Eng Phys. 2020 Nov;85:7-15.
In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the spec- imens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility.